Microstructural impact of anodic coatings on the electrochemical chlorine evolution reactionw
نویسندگان
چکیده
Sol–gel Ru0.3Sn0.7O2 electrode coatings with crack-free and mud-crack surface morphology deposited onto a Ti-substrate are prepared for a comparative investigation of the microstructural effect on the electrochemical activity for Cl2 production and the Cl2 bubble evolution behaviour. For comparison, a state-of-the-art mud-crack commercial Ru0.3Ti0.7O2 coating is used. The compact coating is potentially durable over a long term compared to the mud-crack coating due to the reduced penetration of the electrolyte. Ti L-edge X-ray absorption spectroscopy confirms that a TiOx interlayer is formed between the mud-crack Ru0.3Sn0.7O2 coating and the underlying Ti-substrate due to the attack of the electrolyte. Meanwhile, the compact coating shows enhanced activity in comparison to the commercial coating, benefiting from the nanoparticle-nanoporosity architecture. The dependence of the overall electrode polarization behaviour on the local activity and the bubble evolution behaviour for the Ru0.3Sn0.7O2 coatings with different surface microstructure are evaluated by means of scanning electrochemical microscopy and microscopic bubble imaging.
منابع مشابه
Microstructural impact of anodic coatings on the electrochemical chlorine evolution reaction.
Sol-gel Ru(0.3)Sn(0.7)O(2) electrode coatings with crack-free and mud-crack surface morphology deposited onto a Ti-substrate are prepared for a comparative investigation of the microstructural effect on the electrochemical activity for Cl(2) production and the Cl(2) bubble evolution behaviour. For comparison, a state-of-the-art mud-crack commercial Ru(0.3)Ti(0.7)O(2) coating is used. The compac...
متن کاملPreparation of Ni-P-CeO2 electrode and study on electrocatalytic properties for hydrogen evolution reaction
In this study ternary Ni-P-CeO2 catalysts were first synthesized by the Co-electrodeposition method on a copper substrate and then characterized by means of microstructural and electrochemical techniques toward a hydrogen evolution reaction (HER). Also, for comparison other catalysts such as Ni-CeO2, Ni-P, and Ni were prepared and characterized by the same methods. The microstructure of the inv...
متن کاملElectrochemical surface modification of titanium in dentistry.
Titanium and its alloys have good biocompatibility with body cells and tissues and are widely used for implant applications. However, clinical procedures place more stringent and tough requirements on the titanium surface necessitating artificial surface treatments. Among the many methods of titanium surface modification, electrochemical techniques are simple and cheap. Anodic oxidation is the ...
متن کاملComparison of Properties of Ti/TiN/TiCN/TiAlN Film Deposited by Cathodic Arc Physical Vapor and Plasma-assisted Chemical Vapor Deposition on Custom 450 Steel Substrates
This study investigated the effects of deposition techniques on the microstructural and tribological properties of Ti/TiN/TiCN/TiAlN multilayer coatings onto a Custom 450 steel substrate. The coatings were produced using cathodic arc physical vapor deposition (CAPVD) and plasma-assisted chemical vapor deposition (PACVD). The microstructural of the coatings was evaluated using (SEM), and phase f...
متن کاملA review on the prevalent fabrication methods, microstructural, mechanical properties, and corrosion resistance of nanostructured hydroxyapatite containing bilayer and multilayer coatings used in biomedical applications
Surface treatments of the biomaterials are of great interest in many biomedical applications. Hydroxyapatite is a favorable candidate for surface modification of the implants. To date, a wide variety of methods have been developed to produce bio-active/biocompatible coatings with desirable features in order to improve the performance of the implants. This paper strives to overview the present p...
متن کامل